Improved nearest centroid classifier with shrunken distance measure for null LDA method on cancer classification problem

نویسندگان

  • A. Sharma
  • K. K. Paliwal
چکیده

Null linear discriminant analysis (LDA) is a well-known dimensionality reduction technique for the small sample size problem. When the null LDA technique projects the samples to a lower dimensional space, the covariance matrices of individual classes become zero, i.e. all the projected vectors of a given class merge into a single vector. In this case, only the nearest centroid classifier (NCC) can be applied for classification. To improve the classification performance of NCC in the reduced-dimensional space, a shrunken distance based NCC technique is proposed that uses class-conditional a priori probabilities for distance computation. Experiments on several DNA microarray gene expression datasets using the proposed technique show very encouraging results for cancer classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearest Shrunken Centroid as Feature Selection of Microarray Data

The nearest shrunken centroid classifier uses shrunken centroids as prototypes for each class and test samples are classified to belong to the class whose shrunken centroid is nearest to it. In our study, the nearest shrunken centroid classifier was used simply to select important genes prior to classification. Random Forest, a decision tree based classification algorithm, is chosen as a classi...

متن کامل

Improved centroids estimation for the nearest shrunken centroid classifier

MOTIVATION The nearest shrunken centroid (NSC) method has been successfully applied in many DNA-microarray classification problems. The NSC uses 'shrunken' centroids as prototypes for each class and identifies subsets of genes that best characterize each class. Classification is then made to the nearest (shrunken) centroid. The NSC is very easy to implement and very easy to interpret, however, ...

متن کامل

Classifying microarray cancer datasets using nearest subspace classification

In this paper we implement and test the recently described nearest subspace classifier on a range of microarray cancer datasets. Its classification accuracy is tested against nearest neighbor and nearest centroid algorithms, and is shown to give a significant improvement. This classification system uses class-dependent PCA to construct a subspace for each class. Test vectors are assigned the cl...

متن کامل

Diagnosis of multiple cancer types by shrunken centroids of gene expression.

We have devised an approach to cancer class prediction from gene expression profiling, based on an enhancement of the simple nearest prototype (centroid) classifier. We shrink the prototypes and hence obtain a classifier that is often more accurate than competing methods. Our method of "nearest shrunken centroids" identifies subsets of genes that best characterize each class. The technique is g...

متن کامل

Optimal Iterative Discriminant Analysis In Kernel Space

Kernel trick is a powerful tool being used for solving complex pattern classification problem. As long as a linear feature extraction algorithm can be expressed exclusively by dot-products, it can be extended to non-linear version by combining kernel method. In this paper, we present such an improved iterative algorithm used for linear discriminant analysis. By mapping data onto high dimensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010